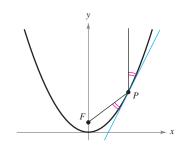
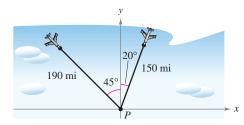
P.S. Problem Solving

- **1. Using a Parabola** Consider the parabola $x^2 = 4y$ and the focal chord $y = \frac{3}{4}x + 1$.
 - (a) Sketch the graph of the parabola and the focal chord.
 - (b) Show that the tangent lines to the parabola at the endpoints of the focal chord intersect at right angles.
 - (c) Show that the tangent lines to the parabola at the endpoints of the focal chord intersect on the directrix of the parabola.
- **2. Using a Parabola** Consider the parabola $x^2 = 4py$ and one of its focal chords.
 - (a) Show that the tangent lines to the parabola at the endpoints of the focal chord intersect at right angles.
 - (b) Show that the tangent lines to the parabola at the endpoints of the focal chord intersect on the directrix of the parabola.
- **3. Proof** Prove Theorem 10.2, Reflective Property of a Parabola, as shown in the figure.



4. Flight Paths An air traffic controller spots two planes at the same altitude flying toward each other (see figure). Their flight paths are 20° and 315° . One plane is 150 miles from point *P* with a speed of 375 miles per hour. The other is 190 miles from point *P* with a speed of 450 miles per hour.



- (a) Find parametric equations for the path of each plane where t is the time in hours, with t = 0 corresponding to the time at which the air traffic controller spots the planes.
- (b) Use the result of part (a) to write the distance between the planes as a function of *t*.
- (c) Use a graphing utility to graph the function in part (b). When will the distance between the planes be minimum? If the planes must keep a separation of at least 3 miles, is the requirement met?

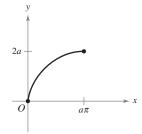
See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

5. Strophoid The curve given by the parametric equations

$$x(t) = \frac{1 - t^2}{1 + t^2}$$
 and $y(t) = \frac{t(1 - t^2)}{1 + t^2}$

is called a strophoid.

- (a) Find a rectangular equation of the strophoid.
- (b) Find a polar equation of the strophoid.
- (c) Sketch a graph of the strophoid.
- (d) Find the equations of the two tangent lines at the origin.
- (e) Find the points on the graph at which the tangent lines are horizontal.
- **6. Finding a Rectangular Equation** Find a rectangular equation of the portion of the cycloid given by the parametric equations $x = a(\theta \sin \theta)$ and $y = a(1 \cos \theta)$, $0 \le \theta \le \pi$, as shown in the figure.



7. Cornu Spiral Consider the cornu spiral given by

$$x(t) = \int_0^t \cos\left(\frac{\pi u^2}{2}\right) du \quad \text{and} \quad y(t) = \int_0^t \sin\left(\frac{\pi u^2}{2}\right) du.$$

- (a) Use a graphing utility to graph the spiral over the interval $-\pi \le t \le \pi$.
 - (b) Show that the cornu spiral is symmetric with respect to the origin.
 - (c) Find the length of the cornu spiral from t = 0 to t = a. What is the length of the spiral from $t = -\pi$ to $t = \pi$?
- 8. Using an Ellipse Consider the region bounded by the ellipse $x^2/a^2 + y^2/b^2 = 1$, with eccentricity e = c/a.
 - (a) Show that the area of the region is πab .
 - (b) Show that the solid (oblate spheroid) generated by revolving the region about the minor axis of the ellipse has a volume of $V = 4\pi^2 b/3$ and a surface area of

$$S = 2\pi a^2 + \pi \left(\frac{b^2}{e}\right) \ln \left(\frac{1+e}{1-e}\right).$$

(c) Show that the solid (prolate spheroid) generated by revolving the region about the major axis of the ellipse has a volume of $V = 4\pi ab^2/3$ and a surface area of

$$S = 2\pi b^2 + 2\pi \left(\frac{ab}{e}\right) \arcsin e.$$

746 Chapter 10 Conics, Parametric Equations, and Polar Coordinates

9. Area Let *a* and *b* be positive constants. Find the area of the region in the first quadrant bounded by the graph of the polar equation

$$r = \frac{ab}{(a\sin\theta + b\cos\theta)}, \quad 0 \le \theta \le \frac{\pi}{2}.$$

- **10. Using a Right Triangle** Consider the right triangle shown in the figure.
 - (a) Show that the area of the triangle is $A(\alpha) = \frac{1}{2} \int_0^{\alpha} \sec^2 \theta \, d\theta$.
 - (b) Show that $\tan \alpha = \int_0^\alpha \sec^2 \theta \, d\theta$.
 - (c) Use part (b) to derive the formula for the derivative of the tangent function.

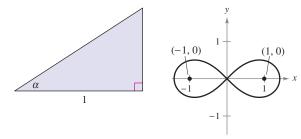
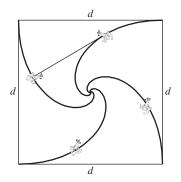


Figure for 10

Figure for 11

- **11. Finding a Polar Equation** Determine the polar equation of the set of all points (r, θ) , the product of whose distances from the points (1, 0) and (-1, 0) is equal to 1, as shown in the figure.
- 12. Arc Length A particle is moving along the path described by the parametric equations x = 1/t and $y = (\sin t)/t$, for $1 \le t < \infty$, as shown in the figure. Find the length of this path.

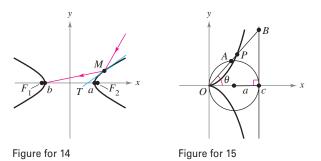
13. Finding a Polar Equation Four dogs are located at the corners of a square with sides of length *d*. The dogs all move counterclockwise at the same speed directly toward the next dog, as shown in the figure. Find the polar equation of a dog's path as it spirals toward the center of the square.



14. Using a Hyperbola Consider the hyperbola

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$

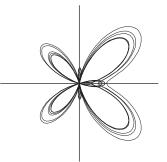
with foci F_1 and F_2 , as shown in the figure. Let T be the tangent line at a point M on the hyperbola. Show that incoming rays of light aimed at one focus are reflected by a hyperbolic mirror toward the other focus.



- **15.** Cissoid of Diocles Consider a circle of radius *a* tangent to the *y*-axis and the line x = 2a, as shown in the figure. Let *A* be the point where the segment *OB* intersects the circle. The cissoid of Diocles consists of all points *P* such that OP = AB.
 - (a) Find a polar equation of the cissoid.
 - (b) Find a set of parametric equations for the cissoid that does not contain trigonometric functions.
 - (c) Find a rectangular equation of the cissoid.
- **16. Butterfly Curve** Use a graphing utility to graph the curve shown below. The curve is given by

$$r = e^{\cos\theta} - 2\cos 4\theta + \sin^5 \frac{\theta}{12}$$

Over what interval must θ vary to produce the curve?



FOR FURTHER INFORMATION For more information on this curve, see the article "A Study in Step Size" by Temple H. Fay in *Mathematics Magazine*. To view this article, go to *MathArticles.com*.

7 17. Graphing Polar Equations Use a graphing utility to graph the polar equation $r = \cos 5\theta + n \cos \theta$ for $0 \le \theta < \pi$ and for the integers n = -5 to n = 5. What values of *n* produce the "heart" portion of the curve? What values of *n* produce the "bell" portion? (This curve, created by Michael W. Chamberlin, appeared in *The College Mathematics Journal.*)

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require